O.P.	Code:	19HS	50851
V			

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B. Tech I Year I Semester Supplementary Examinations August-2021 SEMICONDUCTOR PHYSICS

(Common to CSE & CSIT)

Time: 3 hours

Max. Marks: 60

R19

(Answer	all	Five	Units	5	X	12	=	60	Marks))
			and the second se	-						

UNIT-I

1	a	Using classical free electron theory, derive an expression for electrical conductivity	8M		
	b	Find relaxation time of conduction electron in metal if its resistivity is $1.54 \times 10^{-8} \Omega$ -m and it has 5.8×10^{28} conduction electron/m ³ . Given m= 9.1 x 10^{-31} kg, e= 1.6×10^{-19} C.	4 M		
		OR			
2	a	Write brief note on Fermi Dirac distribution.	6M		
	b	What is the effect of temperature on Fermi Dirac distribution function?	6M		
		UNIT-II			
3	a	What is Fermi level? Prove that the Fermi level is lies exactly in between	6M		
	conduction band and valance band of intrinsic semiconductor.				
	b Derive Einstein's relation in semiconductors.				
		OR			
4	a	Describe the construction and working mechanism of LED.	8 M		
	b	Determine the wavelength of LED fabricated by the CdS material with band gap of	4 M		
		2.42 eV			
		UNIT-III			
5	a	Derive Schrödinger's time dependent wave equation.	8 M		
	b	An electron is moving under a potential field of 15kv. Calculate the wavelength of	4 M		
		electron wave.			
		OR			
6	a	Explain the Faraday's law and Ampere's law through the Maxwell equations.	8M		
	b An electron is bound in a one dimensional infinite well having a width of 1 X 10^{-10} m.				
		Find the energy values in the ground state and the first two excited states.			
		UNIT-IV			
7	a	Describe the construction and working principle of He-Ne Laser with the help of a	8 M		
		neat diagram.	0111		
	b	Mention the application of laser in different fields.	4 M		
		OR			
8	a	Describe the construction and the working principle of optical fibre.	8 M		
	b	Mention applications of optical fibres.	4M		
		UNIT-V			
9	9	Explain the concept of Quantum Confinement in papo materials	ЯМ		
,	a h	Write the applications of panomatorial in industrias and information toobhology			
	U		4111		
10	9	What are the techniques available for synthesizing nanomaterials?	ЛМ		
10	a h	Explain the construction and working principle of Scanning Electron Microscone	91VI Q 1 /1		
	IJ	Explain the construction and working principle of Scalling Election Microscope.	0111		
		*** END ***			